Note

This feature requires MPI, which does not come with OpenAeroStruct by default.

Parallel Multipoint Optimization using MPI

Multipoint analysis or optimization can be parallelized to reduce the runtime. Because each flight condition (or point) is independent, it is embarassingly parallel, meaning that we can easily parallelize these analyses.

Here, we will parallelize the previous multipoint aerostructural example (Q400). This requires a little modification to the original serial runscript.

Runscript modifications

We first import MPI. If this line does not work, make sure that you have a working MPI installation.

from mpi4py import MPI

You may need to turn off the numpy multithreading. This can be done by adding the following lines before importing numpy. The name of environment variable may be different depending on the system.

import os
os.environ['OPENBLAS_NUM_THREADS'] = '1'

Then, let’s set up the problem in the same way as the serial runscript.

prob = om.Problem()

# Setup problem information in indep_var_comp
...

# Add AerostructGeometry to the model
...

Next, we need to add AS_points under a ParallelGroup instead of directly under the prob.model.

# Add a ParallelGroup to parallelize AS_point_0 and AS_point_1.
# We now set max_procs=2, but you may want to increase it if you have more than 2 AS points.
parallel = prob.model.add_subsystem("parallel", om.ParallelGroup(), promotes=["*"], min_procs=1, max_procs=2)

# Loop through and add a certain number of aerostruct points.
for i in range(2):
    point_name = "AS_point_{}".format(i)

    # Create the aero point group and add it to the model
    AS_point = AerostructPoint(surfaces=surfaces, internally_connect_fuelburn=False)

    # Now, add each point under the parallel group (instead of directly under prob.model)
    parallel.add_subsystem(point_name, AS_point)

After establishing variable connections and setting up the driver, we define the optimization objective and constraints. Here, we will setup the parallel derivative computations. In this example, we have 6 functions of interest (1 objective and 5 constraints), which would require 6 linear solves for reverse-mode derivatives in series. Among 6 functions, 4 depend only on AS_point_0, and 2 depend only on AS_point_1. Therefore, we can form 2 pairs and perform linear solves in parallel. We specify parallel_deriv_color to tell OpenMDAO which function’s derivatives can be solved for in parallel.

if MPI.COMM_WORLD.size == 1:  # serial
    color1 = None
    color2 = None
else:  # parallel
    # color1 will parallelize AS_point_0.fuelburn and AS_point_1.L_equals_W derivative computation
    color1 = "parcon1"
    # color2 will parallelize AS_point_0.CL and AS_point_1.wing_perf.failure derivative computation
    color2 = "parcon2"

# AS_point_0.fuelburn, AS_point_0.CL, fuel_vol_delta.fuel_vol_delta, and fuel_diff depend only on AS_point_0
# AS_point_1.L_equals_W and AS_point_1.wing_perf.failure depend only on AS_point_1
prob.model.add_objective("AS_point_0.fuelburn", scaler=1e-5, parallel_deriv_color=color1)
prob.model.add_constraint("AS_point_0.CL", equals=0.6, parallel_deriv_color=color2)
prob.model.add_constraint("AS_point_1.L_equals_W", equals=0.0, parallel_deriv_color=color1)
prob.model.add_constraint("AS_point_1.wing_perf.failure", upper=0.0, parallel_deriv_color=color2)
prob.model.add_constraint("fuel_vol_delta.fuel_vol_delta", lower=0.0, parallel_deriv_color=None)
prob.model.add_constraint("fuel_diff", equals=0.0, parallel_deriv_color=None)

Furthermore, we will add another dummy (nonsense) constraint to explain how parallelization works for reverse-mode derivatives. This dummy constraint (sum of the fuel burns from AS_point_0 and AS_point_1) depends on both AS points. In this case, the linear solves of AS_point_0 and AS_point_1 will be parallelized.

fuel_sum_comp = om.ExecComp("fuel_sum = fuelburn1 + fuelburn2", units="kg", shape=(1))
prob.model.add_subsystem("fuel_sum", fuel_sum_comp, promotes_outputs=["fuel_sum"])
prob.model.connect("AS_point_0.fuelburn", "fuel_sum.fuelburn1")
prob.model.connect("AS_point_1.fuelburn", "fuel_sum.fuelburn2")
prob.model.add_constraint("fuel_sum", lower=0, upper=1e10, scaler=1e-5)

Finally, let’s change the linear solver from default. This step is not necessary and not directly relevant to parallelization, but the LinearBlockGS solver works better on a fine mesh than the default DirectSolver.

if MPI.COMM_WORLD.size == 1:
    # serial
    prob.model.parallel.AS_point_1.coupled.linear_solver = om.LinearBlockGS(
        iprint=2, maxiter=30, use_aitken=True
    )
    prob.model.parallel.AS_point_0.coupled.linear_solver = om.LinearBlockGS(
        iprint=2, maxiter=30, use_aitken=True
    )
    prob.model.parallel.AS_point_1.coupled.linear_solver = om.LinearBlockGS(
        iprint=2, maxiter=30, use_aitken=True
    )

elif MPI.COMM_WORLD.size == 2:
    # parallel. let each proc set the linear solver for their AS point
    if MPI.COMM_WORLD.rank == 0:
        prob.model.parallel.AS_point_0.coupled.linear_solver = om.LinearBlockGS(
            iprint=2, maxiter=30, use_aitken=True
        )
    if MPI.COMM_WORLD.rank == 1:
        prob.model.parallel.AS_point_1.coupled.linear_solver = om.LinearBlockGS(
            iprint=2, maxiter=30, use_aitken=True
        )

Complete runscript

import numpy as np
import time

from openaerostruct.integration.aerostruct_groups import AerostructGeometry, AerostructPoint
from openaerostruct.structures.wingbox_fuel_vol_delta import WingboxFuelVolDelta
import openmdao.api as om

from mpi4py import MPI  # noqa: F811

# Provide coordinates for a portion of an airfoil for the wingbox cross-section as an nparray with dtype=complex (to work with the complex-step approximation for derivatives).
# These should be for an airfoil with the chord scaled to 1.
# We use the 10% to 60% portion of the NASA SC2-0612 airfoil for this case
# We use the coordinates available from airfoiltools.com. Using such a large number of coordinates is not necessary.
# The first and last x-coordinates of the upper and lower surfaces must be the same

# fmt: off
upper_x = np.array([0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6], dtype="complex128")
lower_x = np.array([0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6], dtype="complex128")
upper_y = np.array([ 0.0447,  0.046,  0.0472,  0.0484,  0.0495,  0.0505,  0.0514,  0.0523,  0.0531,  0.0538, 0.0545,  0.0551,  0.0557, 0.0563,  0.0568, 0.0573,  0.0577,  0.0581,  0.0585,  0.0588,  0.0591,  0.0593,  0.0595,  0.0597,  0.0599,  0.06,    0.0601,  0.0602,  0.0602,  0.0602,  0.0602,  0.0602,  0.0601,  0.06,    0.0599,  0.0598,  0.0596,  0.0594,  0.0592,  0.0589,  0.0586,  0.0583,  0.058,   0.0576,  0.0572,  0.0568,  0.0563,  0.0558,  0.0553,  0.0547,  0.0541], dtype="complex128")  # noqa: E201, E241
lower_y = np.array([-0.0447, -0.046, -0.0473, -0.0485, -0.0496, -0.0506, -0.0515, -0.0524, -0.0532, -0.054, -0.0547, -0.0554, -0.056, -0.0565, -0.057, -0.0575, -0.0579, -0.0583, -0.0586, -0.0589, -0.0592, -0.0594, -0.0595, -0.0596, -0.0597, -0.0598, -0.0598, -0.0598, -0.0598, -0.0597, -0.0596, -0.0594, -0.0592, -0.0589, -0.0586, -0.0582, -0.0578, -0.0573, -0.0567, -0.0561, -0.0554, -0.0546, -0.0538, -0.0529, -0.0519, -0.0509, -0.0497, -0.0485, -0.0472, -0.0458, -0.0444], dtype="complex128")
# fmt: on

# Here we create a custom mesh for the wing
# It is evenly spaced with nx chordwise nodal points and ny spanwise nodal points for the half-span

span = 28.42  # wing span in m
root_chord = 3.34  # root chord in m

# Let's use a finer mesh
nx = 3  # number of chordwise nodal points (should be odd)
ny = 11  # number of spanwise nodal points for the half-span

# Initialize the 3-D mesh object. Chordwise, spanwise, then the 3D coordinates.
mesh = np.zeros((nx, ny, 3))

# Start away from the symmetry plane and approach the plane as the array indices increase.
# The form of this 3-D array can be very confusing initially.
# For each node we are providing the x, y, and z coordinates.
# x is chordwise, y is spanwise, and z is up.
# For example (for a mesh with 5 chordwise nodes and 15 spanwise nodes for the half wing), the node for the leading edge at the tip would be specified as mesh[0, 0, :] = np.array([1.1356, -14.21, 0.])
# and the node at the trailing edge at the root would be mesh[4, 14, :] = np.array([3.34, 0., 0.]).
# We only provide the left half of the wing because we use symmetry.
# Print the following mesh and elements of the mesh to better understand the form.

mesh[:, :, 1] = np.linspace(-span / 2, 0, ny)
mesh[0, :, 0] = 0.34 * root_chord * np.linspace(1.0, 0.0, ny)
mesh[2, :, 0] = root_chord * (np.linspace(0.4, 1.0, ny) + 0.34 * np.linspace(1.0, 0.0, ny))
mesh[1, :, 0] = (mesh[2, :, 0] + mesh[0, :, 0]) / 2

# print(mesh)

surf_dict = {
    # Wing definition
    "name": "wing",  # name of the surface
    "symmetry": True,  # if true, model one half of wing
    "S_ref_type": "wetted",  # how we compute the wing area,
    # can be 'wetted' or 'projected'
    "mesh": mesh,
    "twist_cp": np.array([6.0, 7.0, 7.0, 7.0]),
    "fem_model_type": "wingbox",
    "data_x_upper": upper_x,
    "data_x_lower": lower_x,
    "data_y_upper": upper_y,
    "data_y_lower": lower_y,
    "spar_thickness_cp": np.array([0.004, 0.004, 0.004, 0.004]),  # [m]
    "skin_thickness_cp": np.array([0.003, 0.006, 0.010, 0.012]),  # [m]
    "original_wingbox_airfoil_t_over_c": 0.12,
    # Aerodynamic deltas.
    # These CL0 and CD0 values are added to the CL and CD
    # obtained from aerodynamic analysis of the surface to get
    # the total CL and CD.
    # These CL0 and CD0 values do not vary wrt alpha.
    # They can be used to account for things that are not included, such as contributions from the fuselage, nacelles, tail surfaces, etc.
    "CL0": 0.0,
    "CD0": 0.0142,
    "with_viscous": True,  # if true, compute viscous drag
    "with_wave": True,  # if true, compute wave drag
    # Airfoil properties for viscous drag calculation
    "k_lam": 0.05,  # percentage of chord with laminar
    # flow, used for viscous drag
    "c_max_t": 0.38,  # chordwise location of maximum thickness
    "t_over_c_cp": np.array([0.1, 0.1, 0.15, 0.15]),
    # Structural values are based on aluminum 7075
    "E": 73.1e9,  # [Pa] Young's modulus
    "G": (73.1e9 / 2 / 1.33),  # [Pa] shear modulus (calculated using E and the Poisson's ratio here)
    "yield": (420.0e6 / 1.5),  # [Pa] allowable yield stress
    "mrho": 2.78e3,  # [kg/m^3] material density
    "strength_factor_for_upper_skin": 1.0,  # the yield stress is multiplied by this factor for the upper skin
    "wing_weight_ratio": 1.25,
    "exact_failure_constraint": False,  # if false, use KS function
    "struct_weight_relief": True,
    "distributed_fuel_weight": True,
    "fuel_density": 803.0,  # [kg/m^3] fuel density (only needed if the fuel-in-wing volume constraint is used)
    "Wf_reserve": 500.0,  # [kg] reserve fuel mass
}

surfaces = [surf_dict]

# Create the problem and assign the model group
prob = om.Problem()

# Add problem information as an independent variables component
indep_var_comp = om.IndepVarComp()
indep_var_comp.add_output("v", val=np.array([0.5 * 310.95, 0.3 * 340.294]), units="m/s")
indep_var_comp.add_output("alpha", val=0.0, units="deg")
indep_var_comp.add_output("alpha_maneuver", val=0.0, units="deg")
indep_var_comp.add_output("Mach_number", val=np.array([0.5, 0.3]))
indep_var_comp.add_output(
    "re",
    val=np.array([0.569 * 310.95 * 0.5 * 1.0 / (1.56 * 1e-5), 1.225 * 340.294 * 0.3 * 1.0 / (1.81206 * 1e-5)]),
    units="1/m",
)
indep_var_comp.add_output("rho", val=np.array([0.569, 1.225]), units="kg/m**3")
indep_var_comp.add_output("CT", val=0.43 / 3600, units="1/s")
indep_var_comp.add_output("R", val=2e6, units="m")
indep_var_comp.add_output("W0", val=25400 + surf_dict["Wf_reserve"], units="kg")
indep_var_comp.add_output("speed_of_sound", val=np.array([310.95, 340.294]), units="m/s")
indep_var_comp.add_output("load_factor", val=np.array([1.0, 2.5]))
indep_var_comp.add_output("empty_cg", val=np.zeros((3)), units="m")
indep_var_comp.add_output("fuel_mass", val=3000.0, units="kg")

prob.model.add_subsystem("prob_vars", indep_var_comp, promotes=["*"])

# Loop over each surface in the surfaces list
for surface in surfaces:
    # Get the surface name and create a group to contain components
    # only for this surface
    name = surface["name"]

    aerostruct_group = AerostructGeometry(surface=surface)

    # Add group to the problem with the name of the surface.
    prob.model.add_subsystem(name, aerostruct_group)

# ------ modification for parallel multipoint analysis -----
# [rst Setup ParallelGroup (beg)]
# Add a ParallelGroup to parallelize AS_point_0 and AS_point_1.
# We now set max_procs=2, but you may want to increase it if you have more than 2 AS points.
parallel = prob.model.add_subsystem("parallel", om.ParallelGroup(), promotes=["*"], min_procs=1, max_procs=2)

# Loop through and add a certain number of aerostruct points.
for i in range(2):
    point_name = "AS_point_{}".format(i)

    # Create the aero point group and add it to the model
    AS_point = AerostructPoint(surfaces=surfaces, internally_connect_fuelburn=False)

    # Now, add each point under the parallel group (instead of directly under prob.model)
    parallel.add_subsystem(point_name, AS_point)
    # [rst Setup ParallelGroup (end)]

    # Connect flow properties to the analysis point
    prob.model.connect("v", point_name + ".v", src_indices=[i])
    prob.model.connect("Mach_number", point_name + ".Mach_number", src_indices=[i])
    prob.model.connect("re", point_name + ".re", src_indices=[i])
    prob.model.connect("rho", point_name + ".rho", src_indices=[i])
    prob.model.connect("CT", point_name + ".CT")
    prob.model.connect("R", point_name + ".R")
    prob.model.connect("W0", point_name + ".W0")
    prob.model.connect("speed_of_sound", point_name + ".speed_of_sound", src_indices=[i])
    prob.model.connect("empty_cg", point_name + ".empty_cg")
    prob.model.connect("load_factor", point_name + ".load_factor", src_indices=[i])
    prob.model.connect("fuel_mass", point_name + ".total_perf.L_equals_W.fuelburn")
    prob.model.connect("fuel_mass", point_name + ".total_perf.CG.fuelburn")

    for surface in surfaces:
        name = surface["name"]

        if surf_dict["distributed_fuel_weight"]:
            prob.model.connect("load_factor", point_name + ".coupled.load_factor", src_indices=[i])

        com_name = point_name + "." + name + "_perf."
        prob.model.connect(
            name + ".local_stiff_transformed", point_name + ".coupled." + name + ".local_stiff_transformed"
        )
        prob.model.connect(name + ".nodes", point_name + ".coupled." + name + ".nodes")

        # Connect aerodyamic mesh to coupled group mesh
        prob.model.connect(name + ".mesh", point_name + ".coupled." + name + ".mesh")
        if surf_dict["struct_weight_relief"]:
            prob.model.connect(name + ".element_mass", point_name + ".coupled." + name + ".element_mass")

        # Connect performance calculation variables
        prob.model.connect(name + ".nodes", com_name + "nodes")
        prob.model.connect(name + ".cg_location", point_name + "." + "total_perf." + name + "_cg_location")
        prob.model.connect(
            name + ".structural_mass", point_name + "." + "total_perf." + name + "_structural_mass"
        )

        # Connect wingbox properties to von Mises stress calcs
        prob.model.connect(name + ".Qz", com_name + "Qz")
        prob.model.connect(name + ".J", com_name + "J")
        prob.model.connect(name + ".A_enc", com_name + "A_enc")
        prob.model.connect(name + ".htop", com_name + "htop")
        prob.model.connect(name + ".hbottom", com_name + "hbottom")
        prob.model.connect(name + ".hfront", com_name + "hfront")
        prob.model.connect(name + ".hrear", com_name + "hrear")

        prob.model.connect(name + ".spar_thickness", com_name + "spar_thickness")
        prob.model.connect(name + ".t_over_c", com_name + "t_over_c")

prob.model.connect("alpha", "AS_point_0" + ".alpha")
prob.model.connect("alpha_maneuver", "AS_point_1" + ".alpha")

# Here we add the fuel volume constraint componenet to the model
prob.model.add_subsystem("fuel_vol_delta", WingboxFuelVolDelta(surface=surface))
prob.model.connect("wing.struct_setup.fuel_vols", "fuel_vol_delta.fuel_vols")
prob.model.connect("AS_point_0.fuelburn", "fuel_vol_delta.fuelburn")

if surf_dict["distributed_fuel_weight"]:
    prob.model.connect("wing.struct_setup.fuel_vols", "AS_point_0.coupled.wing.struct_states.fuel_vols")
    prob.model.connect("fuel_mass", "AS_point_0.coupled.wing.struct_states.fuel_mass")

    prob.model.connect("wing.struct_setup.fuel_vols", "AS_point_1.coupled.wing.struct_states.fuel_vols")
    prob.model.connect("fuel_mass", "AS_point_1.coupled.wing.struct_states.fuel_mass")

comp = om.ExecComp("fuel_diff = (fuel_mass - fuelburn) / fuelburn", units="kg")
prob.model.add_subsystem("fuel_diff", comp, promotes_inputs=["fuel_mass"], promotes_outputs=["fuel_diff"])
prob.model.connect("AS_point_0.fuelburn", "fuel_diff.fuelburn")

# Use these settings if you do not have pyOptSparse or SNOPT
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options["optimizer"] = "SLSQP"
prob.driver.options["tol"] = 1e-4

# # The following are the optimizer settings used for the EngOpt conference paper
# # Uncomment them if you can use SNOPT
# prob.driver = om.pyOptSparseDriver()
# prob.driver.options['optimizer'] = "SNOPT"
# prob.driver.opt_settings['Major optimality tolerance'] = 5e-6
# prob.driver.opt_settings['Major feasibility tolerance'] = 1e-8
# prob.driver.opt_settings['Major iterations limit'] = 200

recorder = om.SqliteRecorder("aerostruct.db")
prob.driver.add_recorder(recorder)

# We could also just use prob.driver.recording_options['includes']=['*'] here, but for large meshes the database file becomes extremely large. So we just select the variables we need.
prob.driver.recording_options["includes"] = [
    "alpha",
    "rho",
    "v",
    "cg",
    "AS_point_1.cg",
    "AS_point_0.cg",
    "AS_point_0.coupled.wing_loads.loads",
    "AS_point_1.coupled.wing_loads.loads",
    "AS_point_0.coupled.wing.normals",
    "AS_point_1.coupled.wing.normals",
    "AS_point_0.coupled.wing.widths",
    "AS_point_1.coupled.wing.widths",
    "AS_point_0.coupled.aero_states.wing_sec_forces",
    "AS_point_1.coupled.aero_states.wing_sec_forces",
    "AS_point_0.wing_perf.CL1",
    "AS_point_1.wing_perf.CL1",
    "AS_point_0.coupled.wing.S_ref",
    "AS_point_1.coupled.wing.S_ref",
    "wing.geometry.twist",
    "wing.mesh",
    "wing.skin_thickness",
    "wing.spar_thickness",
    "wing.t_over_c",
    "wing.structural_mass",
    "AS_point_0.wing_perf.vonmises",
    "AS_point_1.wing_perf.vonmises",
    "AS_point_0.coupled.wing.def_mesh",
    "AS_point_1.coupled.wing.def_mesh",
]

prob.driver.recording_options["record_objectives"] = True
prob.driver.recording_options["record_constraints"] = True
prob.driver.recording_options["record_desvars"] = True
prob.driver.recording_options["record_inputs"] = True

# --- define optimization problem ---
# Design variables
prob.model.add_design_var("wing.twist_cp", lower=-15.0, upper=15.0, scaler=0.1)
prob.model.add_design_var("wing.spar_thickness_cp", lower=0.003, upper=0.1, scaler=1e2)
prob.model.add_design_var("wing.skin_thickness_cp", lower=0.003, upper=0.1, scaler=1e2)
prob.model.add_design_var("wing.geometry.t_over_c_cp", lower=0.07, upper=0.2, scaler=10.0)
prob.model.add_design_var("fuel_mass", lower=0.0, upper=2e5, scaler=1e-5)
prob.model.add_design_var("alpha_maneuver", lower=-15.0, upper=15)

# ------ modification for parallel multipoint analysis -----
# We have 6 functions (objective + constraints), which would require 6 linear solves for reverse-mode derivative computations in series.
# Among these functions (outputs), 4 depend only on AS_point_0, and 2 depend only on AS_point_1.
# Therefore we can form 2 pairs and perform linear solves in parallel. This is done by assigning the same parallel_deriv_color.
# [rst Parallel deriv color setup 1 (beg)]
if MPI.COMM_WORLD.size == 1:  # serial
    color1 = None
    color2 = None
else:  # parallel
    # color1 will parallelize AS_point_0.fuelburn and AS_point_1.L_equals_W derivative computation
    color1 = "parcon1"
    # color2 will parallelize AS_point_0.CL and AS_point_1.wing_perf.failure derivative computation
    color2 = "parcon2"

# AS_point_0.fuelburn, AS_point_0.CL, fuel_vol_delta.fuel_vol_delta, and fuel_diff depend only on AS_point_0
# AS_point_1.L_equals_W and AS_point_1.wing_perf.failure depend only on AS_point_1
prob.model.add_objective("AS_point_0.fuelburn", scaler=1e-5, parallel_deriv_color=color1)
prob.model.add_constraint("AS_point_0.CL", equals=0.6, parallel_deriv_color=color2)
prob.model.add_constraint("AS_point_1.L_equals_W", equals=0.0, parallel_deriv_color=color1)
prob.model.add_constraint("AS_point_1.wing_perf.failure", upper=0.0, parallel_deriv_color=color2)
prob.model.add_constraint("fuel_vol_delta.fuel_vol_delta", lower=0.0, parallel_deriv_color=None)
prob.model.add_constraint("fuel_diff", equals=0.0, parallel_deriv_color=None)
# [rst Parallel deriv color setup 1 (end)]

# We will consider another dummy constraint on the sum of fuel burns from AS_point_0 and AS_point_1
# (This constraint doesn't make any physical sense, but we do this to explain how parallel group works for reverse-mode derivatives)
# fuel_sum depends on both AS_point_0 and AS_point_1. Linear solves for point_0 and point_1 will be parallelized.
# [rst Parallel deriv color setup 2 (beg)]
fuel_sum_comp = om.ExecComp("fuel_sum = fuelburn1 + fuelburn2", units="kg", shape=(1))
prob.model.add_subsystem("fuel_sum", fuel_sum_comp, promotes_outputs=["fuel_sum"])
prob.model.connect("AS_point_0.fuelburn", "fuel_sum.fuelburn1")
prob.model.connect("AS_point_1.fuelburn", "fuel_sum.fuelburn2")
prob.model.add_constraint("fuel_sum", lower=0, upper=1e10, scaler=1e-5)
# [rst Parallel deriv color setup 2 (end)]

# Set up the problem
prob.setup()

# change linear solvers.
# [rst Change linear solver (beg)]
if MPI.COMM_WORLD.size == 1:
    # serial
    prob.model.parallel.AS_point_1.coupled.linear_solver = om.LinearBlockGS(
        iprint=2, maxiter=30, use_aitken=True
    )
    prob.model.parallel.AS_point_0.coupled.linear_solver = om.LinearBlockGS(
        iprint=2, maxiter=30, use_aitken=True
    )
    prob.model.parallel.AS_point_1.coupled.linear_solver = om.LinearBlockGS(
        iprint=2, maxiter=30, use_aitken=True
    )

elif MPI.COMM_WORLD.size == 2:
    # parallel. let each proc set the linear solver for their AS point
    if MPI.COMM_WORLD.rank == 0:
        prob.model.parallel.AS_point_0.coupled.linear_solver = om.LinearBlockGS(
            iprint=2, maxiter=30, use_aitken=True
        )
    if MPI.COMM_WORLD.rank == 1:
        prob.model.parallel.AS_point_1.coupled.linear_solver = om.LinearBlockGS(
            iprint=2, maxiter=30, use_aitken=True
        )
# [rst Change linear solver (end)]

# run aerostructural analysis
start_time = time.time()
prob.run_model()
run_model_time = time.time() - start_time

# compute derivatives
start_time = time.time()
totals = prob.compute_totals()
derivs_time = time.time() - start_time

print("I am processor", MPI.COMM_WORLD.rank, ", finished run_model and compute_totals")

if MPI.COMM_WORLD.rank == 0:
    print("Analysis runtime: ", run_model_time, "[s]")
    print("Derivatives runtime: ", derivs_time, "[s]")

To run this example in parallel with two processors, use the following command:

$ mpirun -n 2 python <name of script>.py

Solver Outputs

The stdout of the above script would look like the following. The solver outputs help us understand how solvers are parallelized for analysis and total derivative computations.

# Nonlinear solver in parallel
===========================
parallel.AS_point_0.coupled
===========================

===========================
parallel.AS_point_1.coupled
===========================
NL: NLBGS 1 ; 82168.4402 1
NL: NLBGS 1 ; 79704.5639 1
NL: NLBGS 2 ; 63696.5109 0.775194354
NL: NLBGS 2 ; 68552.4805 0.860082248
NL: NLBGS 3 ; 2269.83605 0.0276241832
NL: NLBGS 3 ; 2641.30776 0.0331387267
NL: NLBGS 4 ; 26.8901082 0.000327255917
NL: NLBGS 4 ; 33.4963389 0.000420256222
NL: NLBGS 5 ; 0.20014208 2.43575367e-06
NL: NLBGS 5 ; 0.273747809 3.43453117e-06
NL: NLBGS 6 ; 0.000203058798 2.47125048e-09
NL: NLBGS 6 ; 0.00033072442 4.14937871e-09
NL: NLBGS 7 ; 3.3285346e-06 4.05086745e-11
NL: NLBGS 7 ; 5.16564573e-06 6.48099115e-11
NL: NLBGS 8 ; 9.30405466e-08 1.13231487e-12
NL: NLBGS Converged
NL: NLBGS 8 ; 1.63279302e-07 2.04855649e-12
NL: NLBGS 9 ; 2.01457772e-09 2.5275563e-14
NL: NLBGS Converged

# Linear solver for "parcon1". Derivatives of AS_point_0.fuelburn and AS_point_1.L_equals_W in parallel.
===========================
parallel.AS_point_0.coupled
===========================

===========================
parallel.AS_point_1.coupled
===========================
LN: LNBGS 0 ; 180.248073 1
LN: LNBGS 0 ; 1.17638541e-05 1
LN: LNBGS 1 ; 0.00284457871 1.57814653e-05
LN: LNBGS 1 ; 1.124189e-06 0.0955629836
LN: LNBGS 2 ; 1.87700622e-08 0.00159557081
LN: LNBGS 2 ; 4.66688449e-05 2.58914529e-07
LN: LNBGS 3 ; 1.13549461e-11 9.65240308e-07
LN: LNBGS Converged
LN: LNBGS 3 ; 8.18485966e-08 4.54088609e-10
LN: LNBGS 4 ; 9.00103905e-10 4.99369503e-12
LN: LNBGS Converged

# Linear solver for "parcon2". Derivatives of AS_point_0.CL and AS_point_1.wing_perf.failure in parallel.
===========================
parallel.AS_point_1.coupled
===========================

===========================
parallel.AS_point_0.coupled
===========================
LN: LNBGS 0 ; 334.283603 1
LN: LNBGS 0 ; 0.00958374526 1
LN: LNBGS 1 ; 2.032696e-05 6.08075293e-08
LN: LNBGS 1 ; 2.02092209e-06 0.000210869762
LN: LNBGS 2 ; 2.3346978e-06 6.98418281e-09
LN: LNBGS 2 ; 2.90180431e-08 3.02783956e-06
LN: LNBGS 3 ; 4.98483883e-08 1.49120052e-10
LN: LNBGS 3 ; 8.63240127e-11 9.0073359e-09
LN: LNBGS Converged
LN: LNBGS 4 ; 5.58667374e-11 1.67123774e-13
LN: LNBGS Converged

# Linear solver for derivatives of fuel_vol_delta.fuel_vol_delta (not parallelized)
===========================
parallel.AS_point_0.coupled
===========================
LN: LNBGS 0 ; 0.224468335 1
LN: LNBGS 1 ; 3.54243924e-06 1.57814653e-05
LN: LNBGS 2 ; 5.81181131e-08 2.58914529e-07
LN: LNBGS 3 ; 1.01928513e-10 4.54088604e-10
LN: LNBGS 4 ; 1.12121714e-12 4.99499023e-12
LN: LNBGS Converged

# Linear solver for derivatives of fuel_diff (not parallelized)
===========================
parallel.AS_point_0.coupled
===========================
LN: LNBGS 0 ; 0.21403928 1
LN: LNBGS 1 ; 3.37785348e-06 1.57814653e-05
LN: LNBGS 2 ; 5.54178795e-08 2.58914529e-07
LN: LNBGS 3 ; 9.71927996e-11 4.54088612e-10
LN: LNBGS Converged

# Linear solver for derivatives of fuel_sum in parallel.
===========================
parallel.AS_point_0.coupled
===========================

===========================
parallel.AS_point_1.coupled
===========================
LN: LNBGS 0 ; 360.496145 1
LN: LNBGS 0 ; 511.274568 1
LN: LNBGS 1 ; 0.00568915741 1.57814653e-05
LN: LNBGS 1 ; 0.00838867553 1.64073788e-05
LN: LNBGS 2 ; 0.00013534629 2.64723299e-07
LN: LNBGS 2 ; 9.33376897e-05 2.58914529e-07
LN: LNBGS 3 ; 1.00754737e-07 1.97065811e-10
LN: LNBGS 3 ; 1.63697193e-07 4.54088609e-10
LN: LNBGS 4 ; 2.24690253e-09 4.39470819e-12
LN: LNBGS Converged
LN: LNBGS 4 ; 1.80020781e-09 4.99369503e-12
LN: LNBGS Converged

Comparing Runtime

How much speedup can we get by parallelization? Here, we compared the runtime for the example above (but with a finer mesh of nx=3 and ny=61). In this case, we achieved decent speedup in nonlinear analysis, but not so much in derivative computation. The actual speedup you can get depends on your problem setups, such as number of points (flight conditions) and functions of interest.

Runtime for Q400 example

Case

Analysis walltime [s]

Derivatives walltime [s]

Serial

1.451

5.775

Parallel

0.840

4.983